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Tris(2-methoxyphenyl)bismuthane as a Dehydrating Agent with High Template Ability:
an Efficient Single-step Synthesis of Macrocyclic Diesters from Diacid Anhydrides and

Glycols
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Tris(2-methoxyphenyl)bismuthane works as both a mild dehydrating agent and a good template for macrocyclic
ester synthesis; prolonged heating of the bismuthane with a dicarboxylic acid anhydride and a glycol in toluene
under reflux afforded the corresponding macrocyclic 1: 1 diester in moderate to good vields, together with a small

amount of a macrocyclic 2:; 2 tetraester.

In spite of being a member of pnictogen family, trivalent
organobismuth exhibits a weak Lewis acid nature due to the
valence extension ability characteristic of heavy non-metallic
elements. There are many reports which describe the coordi-
nation of a bismuth atom with the oxygen or nitrogen atoms of
ether and amino compounds.! However, such a prominent and
specific interacting ability of the bismuth atom with lighter
heteroatoms has apparently not been utilized in organic
synthesis to date. We report herein that tris(2-methoxyphenyl)-
bismuthane 1 works as both a mild dehydrating agent? and as a
good template for the macrocyclic ester synthesis due to its
excellent coordinating ability; when heated with compound 1
in toluene under reflux, dicarboxylic acid anhydride and
glycol smoothly coupled together to give the corresponding
macrocyclic diester in a higher yield than previously
reported.3

A typical preparation of macrocyclic diesters is as follows: A
mixture of phthalic anhydride 2a (740 mg, 5.0 mmol),
tetraethylene glycol 3 (n = 3) (970 mg, 5.0 mmol), bismuthane
1 (1.06 g, 2.0 mmol) and dry toluene (10 cm?) was heated under
reflux for 2 d. A white deposit was filtered off and the filtrate
was evaporated under reduced pressure to leave a pale yellow
oil, which was purified by silica gel column chromatography
with 5% MeOH-CH,Cl, as eluent. A 1:1 diester 6a (n = 2)
was obtained as the major product from the early eluates and a
2:2 tetraester 7a (n = 2) as the minor product from the later
eluates. The isolated yields of compounds 6a (n = 2) and 7a

Table 1 Preparation of macrocyclic di- and tetra-esters

(n = 2) were 61 and 3% respectively. The results are
summarized in Table 1.

Although MS inspection of the crude products revealed the
formation of cyclic 2:2 tetraesters 7 in every case, only 7a
(n=2,3),7c(n = 2)and 7d (n = 2) could be successfully
isolated in a pure form. All products were identified by spectral
and analytical data. The macrocyclic 1:1 diester and 2:2
tetraester structures were confirmed unambiguously by X-ray
analyses of 6a (n = 2) and 7a (n = 3), see Figs. 1 and 2.}

These types of macrocyclic compounds were previously
prepared in low yields (1-30%) from the reaction between
diacid dichlorides and glylcols by the high dilution method
(ca. 60 mmol dm—3, 3 d).3 By using bismuthane 1 as a template,
the corresponding macrocyclic diesters could be obtained in
much better yields (13-83%) at higher concentrations (ca. 500
mmol dm—3).

The initial stage of the macrocyclic formation would be an
ordinary reaction between acid anhydride 2 and glycol 3 to give
a monoester 4, which then reacts with the bismuthane 1 to form
a key intermediate 5. In this intermediate, the oxygen atoms of
the ethylene glycol moiety coordinate to the bismuth atom, !¢
and subsequently the bismuthane-mediated dehydration occurs
intramolecularly to produce the macrocyclic diester 6 (Scheme
1). High-yield formation of macrocyclic compounds even at
high concentrations are possible due to the dual role of the
bismuthane 1 as the dehydrating agent and the template under
the reaction conditions employed.

Polyethylene

glycol 3 Yield (%)= (mp/°C)
Acid anhydride X n 6 7
2 18 (123-125) 13 (127-128)
2a ©i 3 61  (94-96) 3 (111-112)
4 13 (oil) — b
J 3 60 (oil) — b
2b i b
[ 4 56 (oil)
I 2 20 (oil) 9 (oil)
2 ~(CHa)s— 3 47 (oil) b
l 4 83 (oil) — b
2 17 (59-62) 8 (oil)
2d —(CHz)o— 3 48  (oil) —
4 65  (oil) —
H
2e \CIC/ 3 trace (oil)® — 2
/

2 Yields refer to the isolated compounds and were not optimized. ¢ Not isolated. ¢ Polymeric products were formed.
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Fig. 1 An ORTEP drawing of macrocyclic 1:1 diester 6a (n = 2)
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Fig. 2 An ORTEP drawing of macrocyclic 2:2 tetraester 7a (n = 3)
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Scheme 1 Reagents and conditions: i, bismuthane 1, PhMe, reflux, 2 d
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Footnotes

t Selected spectroscopic and analytical data for compound 6a (n = 2); mp
123-125 °C; &y (J/Mz) 3.66 (4 H, s), 3.84 (4 H, t,J 4.8),4.50 (4 H, 1, J 4.8)
and 7.28 — 7.75 (4 H, m); m/z (CI) 281 (8%, M + 1), 237 (8), 193 (54), and
149 (100) (Found: C, 59.7; H, 5.8 C14H;60¢ requires C, 60.0; H, 5.8%). For
7a(n = 2); mp 127-128 °C; &y (J/Hz) 3.68 (8 H, 5), 3.78 (8 H, ,J 5.0), 4.44
(8 H, t, J 5.0) and 7.51-7.74 (8 H, m); m/z (CI) 561 (100%, M + 1). 6a
= 3); mp 94-96 °C; dy (J/Hz) 3.66 (8 H, bs), 3.86 (4 H, t, J 6), 4.48 (4
H,t,J6),7.53(2H,dd,J 3.3 and 5.8) and 7.73 (2 H, dd, J 3.3 and 5.8); &¢
61.69, 64.72, 68.92, 70.59, 128.98, 131.09 and 167.38; V;pax (KBr) cm—1!
1710, 1590, 1570 and 1060; m/z (CI) 325 (100%, M + 1) (Found: C, 58.6;
H, 6.4. C,4H,¢07 requires C, 59.3; H, 6.2%). For 6a (n = 4); oil; dy (J/Hz)
3.64 (4 H, bs), 3.68 (8 H, bs), 3.84 (4 H,t,J 4.9),449 (4 H,t,J 4.9),7.53
(2H, dd,J 3.3 and 5.8) and 7.74 (2 H, dd, J 3.3 and 5.8); d¢ 65.07, 68.96,
70.67,70.79, 128.99, 131.02 and 131.96; m/z (CI) 369 (4%, M + 1), 237 (40)
and 194 (100). (Found: C, 58.7; H, 6.7. C;3H,,03 requires C, 58.7; H,
6.6%). For 6b (n = 3); 0il3; 8y (J/Hz) 1.4-2.0 (8 H, m), 2.77 (2 H, m), 3.64
(12 H, bs) and 4.23 (4 H, t, J 6); m/z (CI) 331 (18%, M + 1) and 155 (100).
For 6b (n = 4); 8y (J/Hz) 1.4-2.0 (8 H, m), 2.85 (2 H, bs), 3.66 (16 H, bs)
and 4.21 (4 H, t,J 4); m/z (CI) 375 (10%, M + 1). 6¢ (n = 2), d&y; (J/Hz) 2.07
(2 H, quintet, J 7.2), 2.42 (4 H, quintet, J 7.2), 3.66 (8 H, bs) and 4.27 (4 H,
t, J 6); m/z (CI) 247 (100%, M + 1). For 6c (n = 3); oil [lit.,3 bp 155
157 °C/0.65 Torr], 8y (J/Hz) 1.94 (2 H, m), 2.40 (4 H, t, J 5), 3.64 (12 H,
bs) and 4.24 (4 H, t, J 4.8); Vimax (NaCl) cm—! 1710 and 1040; m/z (CI) 291
(100%, M + 1). For 6¢ (n = 4), 61 (J/Hz) 2.0 (2 H, quintet, J 7), 2.4 (4 H,
quintet, J 7), 3.66 (16 H, bs) and 4.25 (4 H, t, J 4.8); m/z (CI) 335 (100%,
M + 1). For 6d (n = 2); dy (J/Hz) 2.66 (4 H, s), 3.66 (8 H, bs) and 4.27 (4
H, t,J 4.8); m/z (CI) 233 (100%, M + 1). For 6d (n = 3), 8y (J/Hz) 2.66 (4
H, s), 3.65 (8 H, bs), 3.68 (4 H, t,J 5) and 4.24 (4 H, t, J 5); Vinax (NaCl)/
cm~1 1710 and 1040; m/z (CI) 277 (100%, M + 1). For 6d (n = 4); 6y (J/
Hz) 2.66 (4 H, s), 3.66 (16 H, bs) and 4.27 (4 H, t,J 4); m/z (CI) 321 (100%,
M+ 1).
% Crystal data for 6a (n = 2). C14H1¢0s, M = 280.28. Orthorhombic
prisms, @ = 14.429(4), b = 11.662(9), ¢ = 8.294(3) A, V = 1396(2) A3,
space group Pna2,,Z = 4, D, = 1.334 gcm~—3. Intensity data were recorded
on a Rigaku AFC5R diffractometer with graphite-monochromated Mo-K«
radiation and a 12 kW rotating anode generator. Crystal dimensions 0.350
X 0.180 X 0.200 mm. Scans of (0.68 + 0.30 tan 8)° were made at a speed
of 16.0° min—! (in omega). The final cycle of full-matrix least-squares
refinement was based on 751 observed reflections [/ > 3.00 o (/)] and 244
variable parameters and converged with unweighted and weighted agree-
ment factors of R = 0.042 and R, = 0.043. The maximum and minimum
peaks on the final difference Fourier map corresponded to 0.20 and —0.17
e A—3, respectively. For 7a (n = 3). C3;HaoOs, M = 648.66. Monoclinic
prisms, a = 14.404(5), b = 15.436(4), c = 15.982(4) A, B = 114.66(2), V
= 3230(2) A3, space group P2,/n, Z = 4, D, = 1.334 gcm—3 Scans of (1.26
+ 0.30 tan 8)° were made at a speed of 16.0° min—! (in omega). The final
cycle of full-matrix least-squares refinement was based on 1702 observed
reflections [/ > 3.00 o (/)] and 415 variable parameters and converged with
unweighted and weighted agreement factors of R = 0.076 and R,, = 0.088.
Crystdl dimension 0.450 X 0.450 X 0.080 mm. The maximum and
minimum peaks on the final difference Fourier map corresponded to 0.36
and —027 e A-3, respectively. Atomic coordinates, bond lengths and
angles and thermal parameters have been deposited at the Cambridge
Crystallographic Data Centre. See Information for Authors, Issue No. 1.
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